156 research outputs found

    Random plasma glucose in early pregnancy is a better predictor of gestational diabetes diagnosis than maternal obesity.

    Get PDF
    AIMS/HYPOTHESIS: Asymptomatic pregnant women are screened for gestational diabetes (GDM) at 24-28 weeks' gestation. Recent guidelines also recommend screening early in gestation to identify undiagnosed pre-existing overt diabetes. We assessed the performance of random plasma glucose (RPG) testing at antenatal booking in predicting GDM diagnosis later in pregnancy. METHODS: Data from 25,543 consecutive singleton pregnancies at the Rosie Hospital in Cambridge (UK) were obtained from hospital electronic records as a service evaluation. All women were invited for an antenatal RPG (12-16 weeks) and a 50 g glucose challenge test (GCT; 24-28 weeks) with a 75 g OGTT if GCT >7.7 mmol/l (139 mg/dl). RESULTS: At booking, 17,736 women had an RPG that was able to predict GDM (receiver operating characteristic AUC 0.8) according to various diagnostic criteria in common use. A cut-off point of ≥7.5 mmol/l (135 mg/dl) gave a sensitivity of 0.70 and a specificity of 0.90 for GDM diagnosis. Theoretically, using this screening policy, 13.2% of women would have been categorised at high risk (26.3% had GDM) and 86.8% of women at low risk (1.7% had GDM). RPG performed better than maternal age (AUC 0.60) or BMI (AUC 0.65) at predicting GDM diagnosis. CONCLUSIONS/INTERPRETATION: RPG at booking has reasonable performance as a screening test and is better than maternal age or BMI for identifying women at high risk of GDM. RPG cannot replace OGTT for diagnosis but it may be useful to exclude women who do not need further investigation for GDM and to identify women who could be prioritised for early diagnosis or lifestyle interventions.This project was not supported by any specific funding. Claire Meek receives salary funding from the European Union Seventh Framework Programme (FP7/2007-2013; grant agreement n° 266408) and from the Wellcome Trust Translational Medicine and Therapeutics Programme which is funded by the Wellcome Trust in association with Glaxo SmithKline.This is the final version of the article. It was first available from Springer via http://dx.doi.org/10.1007/s00125-015-3811-

    Comparison and contrast in perceptual categorization

    Get PDF
    People categorized pairs of perceptual stimuli that varied in both category membership and pairwise similarity. Experiments 1 and 2 showed categorization of 1 color of a pair to be reliably contrasted from that of the other. This similarity-based contrast effect occurred only when the context stimulus was relevant for the categorization of the target (Experiment 3). The effect was not simply owing to perceptual color contrast (Experiment 4), and it extended to pictures from common semantic categories (Experiment 5). Results were consistent with a sign-and-magnitude version of N. Stewart and G. D. A. Brown's (2005) similarity-dissimilarity generalized context model, in which categorization is affected by both similarity to and difference from target categories. The data are also modeled with criterion setting theory (M. Treisman & T. C. Williams, 1984), in which the decision criterion is systematically shifted toward the mean of the current stimuli

    Likelihood of 'falling through the net' relates to contemporary prevalence of gestational diabetes. Reply to Ikomi A, Mannan S, Anthony R, Kiss S [letter].

    Get PDF
    This project was not supported by any specific funding. Claire Meek receives salary funding from the European Union Seventh Framework Programme (FP7/2007-2013; grant agreement n° 266408) and from the Wellcome Trust Translational Medicine and Therapeutics Programme which is funded by the Wellcome Trust in association with Glaxo SmithKline.This is the author accepted manuscript. The final version is available from Springer via http://dx.doi.org/10.1007/s00125-015-3737-

    Developmental origin underlies evolutionary rate variation across the placental skull

    Get PDF
    The placental skull has evolved into myriad forms, from longirostrine whales to globular primates, and with a diverse array of appendages from antlers to tusks. This disparity has recently been studied from the perspective of the whole skull, but the skull is composed of numerous elements that have distinct developmental origins and varied functions. Here, we assess the evolution of the skull's major skeletal elements, decomposed into 17 individual regions. Using a high-dimensional morphometric approach for a dataset of 322 living and extinct eutherians (placental mammals and their stem relatives), we quantify patterns of variation and estimate phylogenetic, allometric and ecological signal across the skull. We further compare rates of evolution across ecological categories and ordinal-level clades and reconstruct rates of evolution along lineages and through time to assess whether developmental origin or function discriminate the evolutionary trajectories of individual cranial elements. Our results demonstrate distinct macroevolutionary patterns across cranial elements that reflect the ecological adaptations of major clades. Elements derived from neural crest show the fastest rates of evolution, but ecological signal is equally pronounced in bones derived from neural crest and paraxial mesoderm, suggesting that developmental origin may influence evolutionary tempo, but not capacity for specialisation. This article is part of the theme issue 'The mammalian skull: development, structure and function'

    Developmental origin underlies evolutionary rate variation across the placental skull

    Get PDF
    The placental skull has evolved into myriad forms, from longirostrine whales to globular primates, and with a diverse array of appendages from antlers to tusks. This disparity has recently been studied from the perspective of the whole skull, but the skull is composed of numerous elements that have distinct developmental origins and varied functions. Here, we assess the evolution of the skull's major skeletal elements, decomposed into 17 individual regions. Using a high-dimensional morphometric approach for a dataset of 322 living and extinct eutherians (placental mammals and their stem relatives), we quantify patterns of variation and estimate phylogenetic, allometric and ecological signal across the skull. We further compare rates of evolution across ecological categories and ordinal-level clades and reconstruct rates of evolution along lineages and through time to assess whether developmental origin or function discriminate the evolutionary trajectories of individual cranial elements. Our results demonstrate distinct macroevolutionary patterns across cranial elements that reflect the ecological adaptations of major clades. Elements derived from neural crest show the fastest rates of evolution, but ecological signal is equally pronounced in bones derived from neural crest and paraxial mesoderm, suggesting that developmental origin may influence evolutionary tempo, but not capacity for specialisation. This article is part of the theme issue 'The mammalian skull: development, structure and function'

    Feature integration in natural language concepts

    Get PDF
    Two experiments measured the joint influence of three key sets of semantic features on the frequency with which artifacts (Experiment 1) or plants and creatures (Experiment 2) were categorized in familiar categories. For artifacts, current function outweighed both originally intended function and current appearance. For biological kinds, appearance and behavior, an inner biological function, and appearance and behavior of offspring all had similarly strong effects on categorization. The data were analyzed to determine whether an independent cue model or an interactive model best accounted for how the effects of the three feature sets combined. Feature integration was found to be additive for artifacts but interactive for biological kinds. In keeping with this, membership in contrasting artifact categories tended to be superadditive, indicating overlapping categories, whereas for biological kinds, it was subadditive, indicating conceptual gaps between categories. It is argued that the results underline a key domain difference between artifact and biological concepts

    Extending enzyme molecular recognition with an expanded amino acid alphabet

    No full text
    Natural enzymes are constructed from the twenty proteogenic amino acids, which may then require post-translational modification or the recruitment of coenzymes or metal ions to achieve catalytic function. Here, we demonstrate that expansion of the alphabet of amino acids can also enable the properties of enzymes to be extended. A chemical mutagenesis strategy allowed a wide range of non-canonical amino acids to be systematically incorporated throughout an active site to alter enzymic substrate specificity. Specifically, 13 different non-canonical side chains were incorporated at 12 different positions within the active site of N-acetylneuraminic acid lyase (NAL), and the resulting chemically-modified enzymes were screened for activity with a range of aldehyde substrates. A modified enzyme containing a 2,3-dihydroxypropyl cysteine at position 190 was identified that had significantly increased activity for the aldol reaction of erythrose with pyruvate compared with the wild-type enzyme. Kinetic investigation of a saturation library of the canonical amino acids at the same position showed that this increased activity was not achievable with any of the 20 proteogenic amino acids. Structural and modelling studies revealed that the unique shape and functionality of the non-canonical side chain enabled the active site to be remodelled to enable more efficient stabilisation of the transition state of the reaction. The ability to exploit an expanded amino acid alphabet can thus heighten the ambitions of protein engineers wishing to develop enzymes with new catalytic properties

    A warm Jet in a cold ocean

    Get PDF
    Unprecedented quantities of heat are entering the Pacific sector of the Arctic Ocean through Bering Strait, particularly during summer months. Though some heat is lost to the atmosphere during autumn cooling, a significant fraction of the incoming warm, salty water subducts (dives beneath) below a cooler fresher layer of near-surface water, subsequently extending hundreds of kilometers into the Beaufort Gyre. Upward turbulent mixing of these sub-surface pockets of heat is likely accelerating sea ice melt in the region. This Pacific-origin water brings both heat and unique biogeochemical properties, contributing to a changing Arctic ecosystem. However, our ability to understand or forecast the role of this incoming water mass has been hampered by lack of understanding of the physical processes controlling subduction and evolution of this this warm water. Crucially, the processes seen here occur at small horizontal scales not resolved by regional forecast models or climate simulations; new parameterizations must be developed that accurately represent the physics. Here we present novel high resolution observations showing the detailed process of subduction and initial evolution of warm Pacific-origin water in the southern Beaufort Gyre

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation
    • …
    corecore